30% Off


Title type
Book

CUDA for Engineers: An Introduction to High-Performance Parallel Computing

By Duane Storti, Mete Yurtoglu
$39.87
$56.95
Save 30%
Offer details  | Browse products on sale
Available on demand (O)
We'll put in a special international order, which can take 4-6 weeks to reach you. This item cannot be returned unless it is defective, or there's been a mistake in fulfilling the order.
Don't wait. Order the eBook version instead.
  
 Add to shortlist
ISBN
9780134177410
Published date
02/11/2015
 
 
 

Description

Ideal for students with at least introductory programming experience, this tutorial presents examples and reusable C code to jumpstart a wide variety of applications. Students will walk through moving from serial to parallel computation; computing values of a function in parallel; understanding 2D parallelism; simulating dynamics in the phase plane; simulating heat conduction; interacting with 3D data; walking through a basic N-body simulation, and more.

Product details
ISBN
 
9780134177410
Edition
 
1st
Published date
 
02/11/2015
Published by
 
Pearson Higher Ed USA
Pages
 
352
Format
 
Table of contents

Acknowledgments            xvii

About the Authors             xix

 

Introduction          1

What Is CUDA?     1

What Does “Need-to-Know” Mean for Learning CUDA?     2

What Is Meant by “for Engineers”?     3

What Do You Need to Get Started with CUDA?      4

How Is This Book Structured?      4

Conventions Used in This Book      8

Code Used in This Book      8

User’s Guide      9

Historical Context      10

References      12

 

Chapter 1: First Steps            13

Running CUDA Samples      13

Running Our Own Serial Apps      19

Summary      22

Suggested Projects      23

 

Chapter 2: CUDA Essentials           25

CUDA’s Model for Parallelism     25

Need-to-Know CUDA API and C Language Extensions     28

Summary      31

Suggested Projects      31

References      31

 

Chapter 3: From Loops to Grids           33

Parallelizing dist_v1    33

Parallelizing dist_v2      38

Standard Workflow      42

Simplified Workflow      43

Summary      47

Suggested Projects      48

References      48

 

Chapter 4: 2D Grids and Interactive Graphics           49

Launching 2D Computational Grids      50

Live Display via Graphics Interop     56

Application: Stability      66

Summary      76

Suggested Projects      76

References      77

 

Chapter 5: Stencils and Shared Memory           79

Thread Interdependence      80

Computing Derivatives on a 1D Grid      81

Summary     117

Suggested Projects      118

References      119

 

Chapter 6: Reduction and Atomic Functions          121

Threads Interacting Globally      121

Implementing parallel_dot      123

Computing Integral Properties: centroid_2d      130

Summary      138

Suggested Projects      138

References       138

 

Chapter 7: Interacting with 3D Data           141

Launching 3D Computational Grids: dist_3d     144

Viewing and Interacting with 3D Data: vis_3d      146

Summary      171

Suggested Projects     171

References     171

 

Chapter 8: Using CUDA Libraries           173

Custom versus Off-the-Shelf      173

Thrust      175

cuRAND      190

NPP      193

Linear Algebra Using cuSOLVER and cuBLAS      . 201

cuDNN      207

ArrayFire      207

Summary      207

Suggested       208

References     209

 

Chapter 9: Exploring the CUDA Ecosystem            211

The Go-To List of Primary Sources      211

Further Sources      217

Summary      218

Suggested Projects     219

 

Appendix A: Hardware Setup           221

Checking for an NVIDIA GPU: Windows      221

Checking for an NVIDIA GPU: OS X     222

Checking for an NVIDIA GPU: Linux     223

Determining Compute Capability      223

Upgrading Compute Capability      225

 

Appendix B: Software Setup            229

Windows Setup     229

OS X Setup      238

Linux Setup      240

 

Appendix C: Need-to-Know C Programming          245

Characterization of C     245

C Language Basics      246

Data Types, Declarations, and Assignments      248

Defining Functions      250

Building Apps: Create, Compile, Run, Debug      251

Arrays, Memory Allocation, and Pointers      262

Control Statements: for, if      263

Sample C Programs     267

References     277

 

Appendix D: CUDA Practicalities: Timing, Profiling, Error Handling, and Debugging            279

Execution Timing and Profiling      279

Error Handling     292

Debugging in Windows      298

Debugging in Linux     305

CUDA-MEMCHECK     308

Using Visual Studio Property Pages      309

References     312

 

Index            313

 

Features & benefits
  • Working examples show how to bring low-cost, high-performance parallel computing to engineering and scientific applications
  • Includes easy-to-understand, fully-tested code for all examples
  • For students with at least introductory programming experience
  • Provides CUDA training that can significantly improve an engineer's job market readiness
Author biography

Duane Storti is a professor of mechanical engineering at the University of Washington in Seattle. He has thirty-five years of experience in teaching and research in the areas of engineering mathematics, dynamics and vibrations, computer-aided design, 3D printing, and applied GPU computing.

 

Mete Yurtoglu is currently pursuing an M.S. in applied mathematics and a Ph.D. in mechanical engineering at the University of Washington in Seattle. His research interests include GPU-based methods for computer vision and machine learning.